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Abstract
The penetration depth of the magnetic field into an amorphous superconductor
is calculated. The ratio of the London penetration depth δL to the electron
free path le under zero temperature is above unity for almost all amorphous
metals. That is why pure metals, in a superconducting state, change from type I
superconductors to type II superconductors during the crystalline–amorphous
transition.

For all known superconducting metals, including amorphous ones, the essential
mechanism responsible for the superconducting state is an electron–phonon interaction. This
mechanism and its influence on the different properties of superconductors is described in
detail in various monographs [1–5]. However, during the crystal–amorphous state transition
of the superconductor, a number of its characteristics change. For example, experimental
and theoretical studies of simple amorphous metals show that their transition temperature
Tc into a superconducting state is usually bigger than that of crystalline materials [4, 5].
This is connected to an increase of electron–phonon relation constants. This increase occurs
due to the breaking of long-range ordering in amorphous metals. As a result, the phonon
spectrum softens and diffusive scattering of electrons occurs. The behaviour of amorphous
superconductors becomes even more distinct when applying an external magnetic field. Under
normal conditions, because of the violation of long-range ordering in the amorphous metal,
a residual electrical resistance appears. This causes the electron free path le in amorphous
metals under zero temperature to be finite. In addition, the electron free path becomes
less than the coherence length ξ0, which appears in between electrons, while transitioning
into the superconducting state. As a result, the structural fluctuation scattering of electrons
leads to a decrease of the superconducting correlation length. This in turn decreases the
penetration depth δL of the magnetic field into the superconductor. As a consequence, a
crystalline superconductor of type I during its transition into the amorphous state turns into a
superconductor of type II.
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Using and generalizing the method developed by Abrikosov and Gorkov, it is possible to
use Green temperature functions to investigate the properties of amorphous superconductors
in a weak field. This method was created while developing the theory of superconducting
crystalline alloys (see [1, 6–9]). In a general case of a spatially unbounded medium, the
connection between the Fourier image of the electric current j(r) and the vector potential of
the magnetic field A(r) into this medium is defined through [1, 2]:

j̃α(q) = −Qαβ(q) · Ãβ(q), (1)

where the core Qαβ(q) is written as

Qαβ(q) = 2h̄2e2

m2c
· kBT

(2π)3

+∞∑

s=−∞

∫
d3k kα�̃

(β)

22 (k+,k−;ωs, ωs) +
nee2

mc
δαβ. (2)

Here k± = k ± q/2; h̄ωs = (2s + 1)πkBT, (s = 0,±1,±2, . . .); ne is the electron density

in metal; the iterative indices mean summation. We define the vector �̃
�22(k,k′;ωs, ωs ′),

according to [4] by supposing that ions in amorphous metal take one of numerous quasi-
equilibrium positions (denoted with m), make small oscillations and interact with conduction
electrons. We will describe this interaction by means of a local pseudopotential [4, 10]. The
one-electron Green function in Nambu representation [1, 4] for the mthspatial ion configuration
is

G(m)(x, x ′) =
(

g(m)(x, x ′) f (m)(x, x ′)
f +(m)(x, x ′) g(m)(x, x ′)

)
, (3)

where

g(m)(x, x ′) = −〈Tτ (ψ̂↑(x); ψ̂+
↑(x

′))〉(m),
f (m)(x, x ′) = −〈Tτ (ψ̂↑(x); ψ̂↓(x ′))〉(m),
f +(m)(x, x ′) = −〈Tτ (ψ̂+

↓(x); ψ̂+
↑(x

′))〉(m).
(4)

Here the operators ψ̂α(x) ≡ ψ̂α(r, τ ) and ψ̂+
α (x) ≡ ψ̂+

α (r, τ) with 0 � τ � 1/kBT and spin α
are the Heisenberg operators corresponding to the Schrödinger field operators ψ̂(r) and ψ̂+(r),
and the angular brackets denote the Gibbs averaging over all oscillating and electron degrees
of freedom. The symbol Tτ is an ordering operator over variable τ . The properties of the
one-electron Green function

G(x − x ′) = G(m)(x, x ′) = kBT

(2π)3
∑

s

∫
d3k G̃(k, ωs ) exp(ik(r − r′)− iω(τ − τ ′))

that is averaged over all configurations of quasi-equilibrium ion positions are described in
detail in [4]. The choice of distribution function for configurational averaging depends on
the specific character of the disorder model. Among the known models that describe the
topological disorder of ions in amorphous metal, the most realistic is the model of a frozen
liquid. This model is also used in the current work. That is why we will describe the structure of
our amorphous system using a correlation function formalism, as in the theory of a liquid [10].
The Fourier image of electron Green functions for the weak electron–phonon bond takes the
form [5, 6]

g̃(k, ω) = g̃∗(−k,−ω) = − ih̄ωηω + ξk

h̄2ω2η2
ω + ξ2

k +�2η2
ω

,

f̃ +(k, ω) = f̃ ∗(−k,−ω) = �ηω

h̄2ω2η2
ω + ξ2

k +�2η2
ω

,

(5)



Electromagnetic behaviour of superconductive amorphous metals 7121

where � is the magnitude of the gap in the energy spectrum of the superconductor electron
gas

ξk = h̄2

2m
(k2 − k2

F); ηω = 1 +
1

2τ

(
ω2 +

�2

h̄2

)−1/2

;
1

τ
= mkF

(2π)3h̄3v0

∫
|w̃(2kF sin�/2)|2a(2kF sin�/2) d
;

(6)

w̃(k) is the Fourier image of the screened pseudopotential of the electron–ion interaction;
a(k) is the structure factor of the amorphous metal, linked to the Fourier image of the binary
distribution function by the relation S̃(k) = (2π)3

v0
δ(k) + a(k); v0 = V/N is the volume per

ion. The function

��22(x − x1, x ′ − x ′
1) = (kBT )2

(2π)6
∑

s,s ′

∫
d3k d3k ′ �̃

�22(k,k′;ωs, ω
′
s)

× exp[ik(r − r1)− iωs(τ − τ ′)− ik′(r′ − r′
1) + iωs ′(τ ′ − τ ′

1)]

is defined as

��22(x − x1; x ′ − x ′
1) = − i

2

(
∂

∂r′
1

− ∂

∂r

)
π22(x − x1; x ′ − x ′

1), (7)

where

π22(x − x1; x ′ − x ′) = f +(m)(x ′, x ′
1) f (m)(x, x1) + g(m)(x ′

1, x ′)g(m)(x, x1). (8)

From (3) and (8), it follows that the function π22(x − x1, x ′ − x ′
1) is an element of the matrix

π(x − x1, x ′ − x ′
1) = G(m)(x ′; x ′

1)G
(m)(x1, x)

=
(
π11(x − x1; x ′ − x ′

1) π12(x − x1; x ′ − x ′
1)

π21(x − x1; x ′ − x ′
1) π22(x − x1; x ′ − x ′

1)

)
. (9)

Dyson’s equation for the matrixπ(x − x1, x ′ − x ′
1)may be derived using the diagram technique

of perturbation theory [1, 4]. It turns out that the equation can be written as

π(x − x1, x ′ − x ′
1) = G(x ′ − x ′

1)G(x1 − x)

+
∫

d4 y1 d4y2 d4 y3 d4 y4 G(x ′ − y1)G(y3 − x)K (y1y2 y3 y4)

× π(y4 − x1; y2 − x ′
1) (10)

where the kernel K (y1 y2 y3y4) corresponds to a specific set of Feynman diagrams. If we limit
our attention to a quadratic approximation of the pseudopotential, then the expression for the
kernel K (y1y2 y3 y4) takes the form

K (y1 y2 y3y4) = 1

(2π)3v0

∫
d3q |w̃(q)|2a(q) exp(iq(ry1 − ry3))δ(y1 − y2)δ(y3 − y4).

In this approximation equation (10) transforms to

π(x − x1, x ′ − x ′
1) = G(x ′ − x ′

1)G(x1 − x) +
∫

d4 y1

∫
d4 y2 G(x ′ − y1)G(y2 − x)

×
∫

d3q

(2π)3
|w̃(q)|2
v0

a(q) exp[iq(ry1 − ry2)]π(y2 − x1; y1 − x ′
1). (11)

Here x = (r, τ); y = (ry, τy).
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If we apply to equation (11) with operator − i
2 (

∂
∂r′

1
− ∂

∂r ) and write the resulting equation
in a Fourier form, we can easily obtain the equation for the Fourier image of the vector
��(x − x1; x ′ − x ′

1):

�̃
�(k+,k−;ω,ω) = kG̃(k−;ω)G̃(k+;ω) + G̃(k+;ω)G̃(k−;ω)

×
∫

d3k ′

(2π)3
|w̃(|k − k′|)|2

v0
a(|k − k′|) �̃�(k′

+,k′
−;ω,ω). (12)

Using the explicit form of the vector �̃
�(k+,k−;ω,ω′) and G̃(k, ω) (see (3), (7) and (9)),

we will find the system of equations for all elements of the vector �̃
�. The last two equations

are

�̃
�12(k+,k−;ω,ω) = kA12(k+,k−, ω)[1 +�22(ω)] + kA11(k+,k−, ω)�12(ω),

�̃
�22(k+,k−;ω,ω) = kA22(k+,k−, ω)[1 +�22(ω)] + kA21(k+,k−, ω)�12(ω),

(13)

where

k�i j (ω) =
∫

d3k ′

(2π)3
|w̃(|k − k′|)|

v0
a(|k − k′|) �̃�i j(k′

+,k′
−, ω) (14)

A12(k+,k−, ω) = A∗
21(k+,k−, ω) = f̃ (k+, ω)g̃(k−, ω) + g̃(−k+,−ω) f̃ (k+, ω)

A22(k+,k−, ω) = A∗
11(k+,k−, ω) = f̃ (k+, ω) f̃ +(k−, ω) + g̃(−k+,−ω)g̃(k−,−ω). (15)

As long as |k| ∼ |kF|, we can assume that the function�i j (ω) is independent of |k|.
Multiplying both sides of equation (13) by |w̃(|k−k′ |)|2

v0
a(|k − k′|) and taking the integral

over k′, we get the system of equations for the functions�i j(ω):

k�12(ω) = kA12 · [1 +�22(ω)] + kA11 ·�12(ω),

k�22(ω) = kA22 · [1 +�22(ω)] + kA21 ·�21(ω),
(16)

where

kAi j =
∫

d3k ′

(2π)3
|w̃(|k − k′|)|2

v0
a(|k − k′|)k′ Ai j(k′

+,k′
−, ω). (17)

In relationships (1) and (2) the quantity |q| ∼ 1/δL, where δL is the penetration depth of the
electromagnetic field into the superconductor, and |k| ∼ 1/ le is the free electron path in the
metal. From the assumption that in the amorphous metal le � δL, it follows that |k| � |q|.
Thus in expressions (13), (14), (15) and (17) we can put k± = k ± q/2 ≈ k.

Taking into account that |k| ∼ |k′| ∼ kF in (17) and using the relation [1, 2]:
∫

d3k ′

(2π)3
f (k′) ≈ mkF

(2π)3h̄2

∫ +∞

−∞
dξ ′

k

∫
d
′ f (kF,


′, ξ ′
k). (18)

Then the quantity kAi j is written as

kAi j = k · Ai j = k
h̄

2πτ1
Ãi j, (19)

where

1

τ1
= mkF

(2π)2h̄3

∫ |w̃(2kF sin�/2)|2
v0

a(2k sin(�/2)) cos� · d
 (20)

Ãi j =
∫ +∞

−∞
Ai j(k,k, ω) dξk. (21)
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If the electron–phonon bond is weak, we can use (5) for the calculation of Ãi j .

A11 = A22 = h̄

2τ1
· �2

ηω(h̄2ω2 +�2)3/2
,

A12 = A21 = 0.
(22)

Putting these expressions for Ai j into the equations (16), we will find

�12(ω) = 0,
1 +�22(ω) = 1/(1 − A11).

(23)

From this, the unknown function �̃
�22, according to (13), is

�̃
�22(k+,k−;ω,ω) ≈ �̃

�(k,k;ω,ω) = kA22(k,k, ω)/(1 − A11). (24)

Putting the obtained expression for �̃
�22 into relation (2), and using it to integrate relation (18),

we can find the next expression for the core Qαβ(q):

Qαβ(q) = nee2

mc
δαβ

{
1 + kBT

+∞∑

s=−∞

∫ +∞

−∞
dξk

A22(k,k, ωs )

1 − A11

}
. (25)

We can calculate the second term using the relations (5), (15) and (22) by taking into account
that the second term is the following limit [1]:

kBT
∑

s

∫ +∞

−∞
dξk

A22(k,k, ωs )

1 − A11
= lim

α→0

{
kBT

∑

s

[
1 − h̄

2τ1

�2

ηω(h̄2ω2
s +�2)3/2

]

×
∫ +∞

−∞
dξk cos(αξk)

−h̄2ω2
sη

2
ω +�2η2

ω + ξ2
k

[h̄2ω2
sη

2
ω +�2η2

ω + ξ2
k ]2

}
.

Using the calculus of residuals, it is easy to show that

kBT
∑

s

∫ +∞

−∞
dξk

A22(k,k, ωs )

1 − A11

= −1 + 2πkBT
∞∑

s=0

�2

(h̄2ω2
s +�2)

[√
h̄2ω2

s +�2 + h̄/(2τtr)
] , (26)

where
1

τtr
= 1

τ
− 1

τ1
= mkF

(2π)2h̄3

∫ |w̃(2kF sin(�/2))|
v0

a(2kF sin(�/2))(1 − cos�) d
. (27)

The quantity τtr is called the ‘transport’ time between the impact of electrons with disordered
ions of metal and it defines the residual electrical resistance of amorphous metals:

ρ0 = m

nee2
· 1

τtr
. (28)

The expression (27) was first obtained by Ziman for disordered systems [10, 11].
Substituting (26) in (25) one can find the expression for the kernel Qαβ :

Qαβ(q) = Qδαβ , (29)

where

Q = nee2

mc
2πkBT

∑

s>0

�2

(h̄2ω2
s +�2)

[√
h̄2ω2

s +�2 + h̄2/(2τtr)
] . (30)
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This relation had been obtained first by Abrikosov and Gorkov during the investigations of
electromagnetic properties of crystalline alloys [1, 6–8]. In their case, the ‘transport’ time
τtr was highly dependent on the impurity density inside the superconductor (i.e. when the
concentration approached zero 1/τtr → 0). In our case τtr depends on the structure of the
metal and is finite for pure amorphous metals.

The penetration depth δL of the magnetic field into the superconductor is defined by [2, 3]

δL =
√

c

4πQ
. (31)

If 1/τtr → 0 (i.e. during the transition from amorphous metal to crystal) this formula turns
into a usual London expression:

δL =
√

mc2

4πnse2
, (32)

where

ns = ne · 2πkBT
∑

s

�2

(h̄2ω2
s +�2)3/2

is the density of superconducting electrons (when T → 0 ns → ne).
In the reverse case, when t

2τtr
� �, or le = vFτtr � 2h̄vF

�
= 2ξ0, it is possible in (30) to

neglect the term under the square root in the denominator. Then the remaining series can be
added, and for Q we will get the expression

Q = nee2τtr

m

π

ch̄
� · tanh

(
�

2kBT

)
.

From this

δL(T ) =
√

mc2h̄

4π2nee2τtr� tanh(�/2kBT )
. (33)

If we know δL(T ) then it is easy to define the Ginzburg–Landau parameter χ(T ). Using the
well-known relation χ(T ) = 23/2(h̄c)−1 Hc(T )δ2(T ), where Hc(T ) is the critical magnetic
field that destroys the superconductivity,we can find the following expression for the Ginzburg–
Landau parameter [2, 3]:

χ(T ) = χ(Tc)B(T ), (34)

where

χ(Tc) = 0.72δL(0)/le, (35)

and more nice calculations of δL(T ) show that the function B(T ) decreases from 1.2 to 1
(see [2, 9]) in the limit of (0, Tc).

If for simple amorphous metals we use the model of a ‘frozen’ liquid, then for the numerical
calculations of le = vFτtr it is possible to use the hard sphere model and the pseudopotential
of Ashcroft [4]. In the following table, the calculation results for the quantity δL(0)/ le and
the Ginzburg–Landau parameter χ(T ) are given for almost all simple metals. One can see
that the quantity χ(Tc) is greater than 1/

√
2 = 0.7071 for all metals seen in table 1 (except

Al, Sn). This means that almost all simple metals in a superconducting state are type II
superconductors. Having the value of χ(T ) and using the general theory [2, 3], it is possible to
calculate the lower value of the critical field Hc1(T ), defined as the transition of matter from a
homogeneous superconducting state into a mixed one. Similarly it is possible to find the higher
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Table 1.

Metal δL(0)/le χ(Tc) Hc1(Tc)/Hc(Tc) Hc2/Hc(Tc)

Li 4.02 2.89 0.39 4.09
Cs 4.97 3.58 0.31 5.06
Zn 2.6 1.87 0.57 2.65
Al 0.73 0.53 1 1
Ga 5.83 4.2 0.25 5.93
In 1.09 0.79 0.98 1.11
Sn 0.94 0.675 1 1
Pb 1.69 1.22 0.77 1.72
Bi 1.54 1.11 0.83 1.57

value Hc1(T ), i.e. the highest field at which the mixed superconducting state exists. The lower
critical field is defined by the expression Hc1 = f (χ)Hc, where f (χ) → 1 when χ → 1/

√
2

and f (χ) ≈ ln χ+0.081√
2χ

whenχ � 1, and the higher critical field takes a value Hc2 = √
2χHc. In

the table the values Hc1/Hc and Hc2/Hc when T = Tc are collected. If the field takes the values
Hc1 < H < Hc2 then the superconductor stays in the mixed state, i.e. consisting of ordered
domains of superconducting and normal phases. The mixed state might be described as a
lattice structure that consists of domains (vortex filament), in which the ordering factor changes
quickly with domain sizes, while the microscopic field stays almost invariable [2, 3]. When the
electric current is normal to the direction of the applied magnetic field, the vortex filament lattice
feels the influence of the Lorentz force. In the absence of any other forces the lattice evolves
into a viscous flow. The flow is connected with energy dissipation; therefore the specimen
is no longer superconducting. Under these conditions, the critical current density Ic = 0
when H > Hc1. However, the situation described is applicable only to homogeneous type II
superconductors. In heterogeneous materials, additional interactions of the vortex filament
lattice and sample inhomogeneities exist. Under favourable conditions these interactions
(pinning) lead to resistance for movement or stopping of movement of the vortex lattice,
thus Ic > 0 when H > Hc1. In this sense an amorphous metal is a inhomogeneous material,
since at low temperatures it holds quite a large density of low-temperature excitations (‘two-
level systems’) and impregnations of finely dispersed crystal phase (the amorphous state is a
thermodynamically unstable system), which can interact with vortex filaments. That is why a
strong pinning can occur in amorphous superconductors.
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